Any given number can turn to a constant 9
How to turn any number into single digit number 9. Excel file of calculation :
https://drive.google.com/file/d/0B03s-v1XHNIyOVA1QVFvMUVVc2s/view?usp=sharing
Any given number can be turned to single digit constant 9.
3Rules to Number 9: Any given number(n) other than 0 can be turned to single digit number 9
3Rules to Number 9: Any given number(n) other than 0 can be turned to single digit number 9
1) Sort to Lowest or Lower Value(SLV), then deduct from Given Number(GN)  or RN to obtain Result Number(RN), if  GN is greater than the SLV. eg: n = 6174, SLV = 1467 ie. n-slv
2) Sort to Highest or Higher Value(SHV) , then deduct the SLV from SHV , If the GN or RN and SLV are Equal and obtain RN  eg: slv = 1467 , shv = 7641 shv-slv
3) Add the same number to the GN or RN, if all elements of number is same or single digit number and obtain RN eg: 111 (111+111) and obtain the RN
Repeat the steps applying above rules using RN will convert any  GN to 9
***If Given Number is negative then deduct the sort to highest value in rule 2
Eg: 6174, 9 and 1 are below:
| Steps | Number | Input | Lowest to Highest | Highest to Lowest | Result | Rule | 
| 1 | 6174 | 6174 | 1467 | 7641 | 4707 | GGR | 
| 2 | 6174 | 4707 | 477 | 7740 | 4230 | GGR | 
| 3 | 6174 | 4230 | 234 | 4320 | 3996 | GGR | 
| 4 | 6174 | 3996 | 3699 | 9963 | 297 | GGR | 
| 5 | 6174 | 297 | 279 | 972 | 18 | GGR | 
| 6 | 6174 | 18 | 18 | 81 | 63 | HTL | 
| 7 | 6174 | 63 | 36 | 63 | 27 | GGR | 
| 8 | 6174 | 27 | 27 | 72 | 45 | HTL | 
| 9 | 6174 | 45 | 45 | 54 | 9 | HTL | 
| Steps | Number | Input | Lowest to Highest | Highest to Lowest | Result | Rule | 
| 1 | 9 | 9 | 9 | 9 | 18 | EQL | 
| 2 | 9 | 18 | 18 | 81 | 63 | HTL | 
| 3 | 9 | 63 | 36 | 63 | 27 | GGR | 
| 4 | 9 | 27 | 27 | 72 | 45 | HTL | 
| 5 | 9 | 45 | 45 | 54 | 9 | HTL | 
| Steps | Number | Input | Lowest to Highest | Highest to Lowest | Result | Rule | 
| 1 | 1 | 1 | 1 | 1 | 2 | EQL | 
| 2 | 1 | 2 | 2 | 2 | 4 | EQL | 
| 3 | 1 | 4 | 4 | 4 | 8 | EQL | 
| 4 | 1 | 8 | 8 | 8 | 16 | EQL | 
| 5 | 1 | 16 | 16 | 61 | 45 | HTL | 
| 6 | 1 | 45 | 45 | 54 | 9 | HTL | 
Division by 0 is clearly defined as per the rule of
1) Repetitive deduction with remainder addition back as First Step Rule
2) Rule of Multiplication inverse'  (Error /1)
Any number n/0 = n  or 0;  0/0 = 0  or 1
1) First Step
Eg: 6/2 = 3 , (2 x 3)+0= 6  ;  6/0 = (0 x 1)+6 = 6 ; 7/2 = 3+(1/2), (2 x 3)+1 ; 0/0 = 0 , (0 x 1)+0 =0
| Steps 6/2 | 6 | Steps 6/0 | 6 | Steps 7/2 | 7 | Steps 0/0 | 0 | 
| 1 | -2 | 1 | -0 | 1 | -2 | 1 | -0 | 
| 4 | 6 | 5 | 0 | ||||
| 2 | -2 | 2 | -2 | ||||
| 2 | 3 | ||||||
| 3 | -2 | 3 | -2 | ||||
| 0 | 1 | 
2) Multiplication in verse (Error by 1).
Eg: 1/0 = '0/1 x 1/0 = 0/1 x Error = 0/1 x (Error x 1/1) = 0 x (Error/1) = 0
Logical conclusion : We have group of person representing number n and who don't want be  arranged in group (0 Divisions)so the value of number n remain as same. However division by zero is neither Error nor Undefined.
(01 x 09 = 09 = (01+01+01+01+01+01+01+01+01) - (09 x 01)=0, means from 09 nine (9) times 1 can deduct.
(01 x 09 = 09 = (01+01+01+01+01+01+01+01+01) - (09 x 01)=0, means from 09 nine (9) times 1 can deduct.
or nine(9) times 0 can deduct or nine(9) times 01 can deduct. Hence n/0 = n).
How to turn any number into single digit number 9. Excel file of calculation :
               
               
               
                                                                                                           
                                                                                                                                                                                                               
                                                                                               
               
(01 x 09 = 09 = (01+01+01+01+01+01+01+01+01) - (09 x 01)=0, means from 09 nine (9) times 1 can deduct.
https://drive.google.com/file/d/0B03s-v1XHNIyOVA1QVFvMUVVc2s/view?usp=sharing
Any given number can be turned to single digit constant 9.
                                                                 
3Rules to Number 9:  Any given number(n) other than 0  can be turned to single digit number 9                                                                                           
1) Sort to Lowest or Lower Value(SLV), then deduct from Given Number(GN)  or RN to obtain Result Number(RN), if  GN is greater than the SLV. eg: n = 6174, SLV = 1467 ie. n-slv                                                                                  
2) Sort to Highest or Higher Value(SHV) , then deduct the SLV from SHV , If the GN or RN and SLV are Equal and obtain RN  eg: slv = 1467 , shv = 7641 shv-slv                                                                                             
3) Add the same number to the GN or RN, if all elements of number is same or single digit number and obtain RN eg: 111 (111+111) and obtain the RN                                                                                                                                                                     
Repeat the steps applying above rules using RN will convert any  GN to 9
***If Given Number is negative then deduct the sort to highest value in rule 2
***If Given Number is negative then deduct the sort to highest value in rule 2
Eg: 6174, 9 and 1 are below:                                                                             
Steps 
 | 
Number 
 | 
Input 
 | 
Lowest to Highest 
 | 
Highest to Lowest 
 | 
Result 
 | 
Rule 
 | 
1 
 | 
6174 
 | 
6174 
 | 
1467 
 | 
7641 
 | 
4707 
 | 
GGR 
 | 
2 
 | 
6174 
 | 
4707 
 | 
477 
 | 
7740 
 | 
4230 
 | 
GGR 
 | 
3 
 | 
6174 
 | 
4230 
 | 
234 
 | 
4320 
 | 
3996 
 | 
GGR 
 | 
4 
 | 
6174 
 | 
3996 
 | 
3699 
 | 
9963 
 | 
297 
 | 
GGR 
 | 
5 
 | 
6174 
 | 
297 
 | 
279 
 | 
972 
 | 
18 
 | 
GGR 
 | 
6 
 | 
6174 
 | 
18 
 | 
18 
 | 
81 
 | 
63 
 | 
HTL 
 | 
7 
 | 
6174 
 | 
63 
 | 
36 
 | 
63 
 | 
27 
 | 
GGR 
 | 
8 
 | 
6174 
 | 
27 
 | 
27 
 | 
72 
 | 
45 
 | 
HTL 
 | 
9 
 | 
6174 
 | 
45 
 | 
45 
 | 
54 
 | 
9 
 | 
HTL 
 | 
Steps 
 | 
Number 
 | 
Input 
 | 
Lowest to Highest 
 | 
Highest to Lowest 
 | 
Result 
 | 
Rule 
 | 
1 
 | 
9 
 | 
9 
 | 
9 
 | 
9 
 | 
18 
 | 
EQL 
 | 
2 
 | 
9 
 | 
18 
 | 
18 
 | 
81 
 | 
63 
 | 
HTL 
 | 
3 
 | 
9 
 | 
63 
 | 
36 
 | 
63 
 | 
27 
 | 
GGR 
 | 
4 
 | 
9 
 | 
27 
 | 
27 
 | 
72 
 | 
45 
 | 
HTL 
 | 
5 
 | 
9 
 | 
45 
 | 
45 
 | 
54 
 | 
9 
 | 
HTL 
 | 
Steps 
 | 
Number 
 | 
Input 
 | 
Lowest to Highest 
 | 
Highest to Lowest 
 | 
Result 
 | 
Rule 
 | 
1 
 | 
1 
 | 
1 
 | 
1 
 | 
1 
 | 
2 
 | 
EQL 
 | 
2 
 | 
1 
 | 
2 
 | 
2 
 | 
2 
 | 
4 
 | 
EQL 
 | 
3 
 | 
1 
 | 
4 
 | 
4 
 | 
4 
 | 
8 
 | 
EQL 
 | 
4 
 | 
1 
 | 
8 
 | 
8 
 | 
8 
 | 
16 
 | 
EQL 
 | 
5 
 | 
1 
 | 
16 
 | 
16 
 | 
61 
 | 
45 
 | 
HTL 
 | 
6 
 | 
1 
 | 
45 
 | 
45 
 | 
54 
 | 
9 
 | 
HTL 
 | 
 Division by 0 is clearly defined as per the rule of                                                                                                              
1) Repetitive deduction with remainder addition back as First Step Rule                                                                                                
2) Rule of Multiplication inverse'  (Error /1)
 Any number n/0 = n  or 0;  0/0 = 0  or 1                                                                                                         
1) First Step                                                                                                       
Eg: 6/2 = 3 , (2 x 3)+0= 6  ;  6/0 = (0 x 1)+6 = 6 ; 7/2 = 3+(1/2), (2 x 3)+1 ; 0/0 = 0 , (0 x 1)+0 =0          
Steps 6/2 
 | 
6 
 | 
Steps 6/0 
 | 
6 
 | 
Steps 7/2 
 | 
7 
 | 
Steps 0/0 
 | 
0 
 | 
1 
 | 
-2 
 | 
1 
 | 
-0 
 | 
1 
 | 
-2 
 | 
1 
 | 
-0 
 | 
4 
 | 
6 
 | 
5 
 | 
0 
 | ||||
2 
 | 
-2 
 | 
2 
 | 
-2 
 | ||||
2 
 | 
3 
 | ||||||
3 
 | 
-2 
 | 
3 
 | 
-2 
 | ||||
0 
 | 
1 
 | 
2) Multiplication in verse (Error by 1).                                                                                                    
Eg: 1/0 = '0/1 x 1/0 = 0/1 x Error = 0/1 x (Error x 1/1) = 0 x (Error/1) = 0                                    
Logical conclusion : We have group of person representing number n and who don't want be  arranged in group (0 Divisions)so the value of number n remain as same. However division by zero is neither Error nor Undefined.                                                                                                    
(01 x 09 = 09 = (01+01+01+01+01+01+01+01+01) - (09 x 01)=0, means from 09 nine (9) times 1 can deduct.
 or nine(9) times 0 can deduct or nine(9) times 01 can deduct. Hence n/0 = n).