Search Constant

Showing posts with label Quantum. Show all posts
Showing posts with label Quantum. Show all posts

Sunday, March 4, 2018

Quantum Meet Relativity Equations : ((8πGn÷C^4)Tuv)^2*HW ÷ (HW^2((8πGn÷C^4)Tuv) * ((8πGn÷C^4)Tuv)^2)*HW = HW^2*((8πGn÷C^4)Tuv) ÷ (HW^2*((8πGn÷C^4)Tuv))^2


In the following mathematical  model and equations quantum meet relativity and vice versa.  

Equation : ((8πGn÷C^4)Tuv)^2*HW ÷ (HW^2((8πGn÷C^4)Tuv) * ((8πGn÷C^4)Tuv)^2)*HW = HW^2*((8πGn÷C^4)Tuv) ÷ (HW^2*((8πGn÷C^4)Tuv))^2

General Relativity :

(8πGn÷C^4)Tuv

Quantum  General Time dependent:  HW

(((8πGn÷C^4)Tuv)*HW) ÷ HW # ((HW*(8πGn÷C^4)Tuv)) ÷ (8πGn÷C^4)Tuv

((8πGn÷C^4)Tuv)^2*HW # HW^2*((8πGn÷C^4)Tuv)

(# means not equal)

1) ((8πGn÷C^4)Tuv)^2*HW ÷ (HW^2((8πGn÷C^4)Tuv) * ((8πGn÷C^4)Tuv)^2)*HW = HW^2*((8πGn÷C^4)Tuv) ÷ (HW^2*((8πGn÷C^4)Tuv))^2

2) HW^2((8πGn÷C^4)Tuv))÷ (HW^2((8πGn÷C^4)Tuv) * ((8πGn÷C^4)Tuv)^2)  = ((8πGn÷C^4)Tuv)^2)*HW ÷ ((8πGn÷C^4)Tuv)^2)*HW)^2

3) ) ((8πGn÷C^4)Tuv)^2*HW ÷ (HW^2((8πGn÷C^4)Tuv)^2 * ((8πGn÷C^4)Tuv)^2)*HW = HW^2*((8πGn÷C^4)Tuv) ÷ (HW^2*((8πGn÷C^4)Tuv))^3

4) HW^2((8πGn÷C^4)Tuv))÷ (HW^2((8πGn÷C^4)Tuv) * ((8πGn÷C^4)Tuv)^2)^2  = ((8πGn÷C^4)Tuv)^2)*HW ÷ ((8πGn÷C^4)Tuv)^2)*HW)^3

from the above equations quantum and relativity meet even in other dimensions. There no way to say that they are against each other except the observational difference.

In simpe sense, the graph of the above equations are as follows :

  1. x ÷ xy
  2. x ÷ x^2
  3. y ÷ x^2y
  4. y ÷ y^3

This model will match any equations to itself or with any other equations without any prejudice observation and will return a constant value, if the equation(s) is rearranged.